Skip to main content

Featured Post

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Populating the Full-Text Index in Search: SQL Server

After creating the full-text index, you need to populate it with the data in the columns enabled for full-text support. The SQL Server full-text search engine populates the full-text index through a process called population. Population involves filling the index with words and their location in the data page. When a full-text index is created, it is populated by default. In addition, the SQL Server automatically updates the full-text index as the data is modified in the associated tables.

However, the SQL Server does not keep a list of changes made to the indexed data when the CHANGE_TRACKING option is off. This option is specified while creating the full-text index by using the CREATE FULLTEXT INDEX statement.

If you do not want the full-text index to be populated when it is created using the CREATE FULLTEXT INDEX statement, then you must specify NO POPULATION along with the CHANGE TRACKING OFF option. To populate the index, you need to execute the ALTER FULLTEXT INDEX command along with the START FULL, INCREMENTAL, or UPDATE POPULATION clause.

For example, to create an empty full-text index on the ProductDescription table, you can execute the following statement:

CREATE FULLTEXT INDEX ON Production. ProductionDescription (Description)
KEY INDEX PK_ProductDescription_ProductDescriptionID
WITH CHANGE_TRACKING OFF, NO POPULATION

To populate the index you need to execute the following statement:
ALTER FULLTEXT INDEX ON Production. ProductDescription START FULL POPULATION

The preceding statement will populate the full-text index created on the ProductDesctiption table.

Similar to regular SQL indexes, full-text indexes can also be updated automatically as the data is modified in the associated tables. This repopulation can be time-consuming and adversely affect the usage of resources of the database server during periods of high database activity. Therefore, it is better to schedule repopulation of full-text indexes during periods of low database activity. You can specify the following types of full-text index population methods to repopulate the index:

Full Population

You can use this method when you need to populate the full-text catalog or the full-text index for the first time. After that, you can the maintain the indexes by using change tracking or incremental populations.
During a full population of a full-text catalo, index entries are built for all the rows in all the tables covered by the catalog. If a full population is requested for a table, index entries are built for all the rows in that table.

Change Tracking-Based Population

The SQL Server maintains a record of the rows that have been modified in a table set up for full-text indexing. These changes are propagated to the full-text index.

Incremental Timestamp-Based Population

The incremental population method updates the full-text index with the data that has been changed since the last time the index was refreshed. For an incremental population refresh to work, the indexed table must have a column of the timestamp data type. If a table does not have a column of the timestamp data type, then only a full population refresh can be done.

Comments

Popular Post

Polynomial representation using Linked List for Data Structure in 'C'

Polynomial representation using Linked List The linked list can be used to represent a polynomial of any degree. Simply the information field is changed according to the number of variables used in the polynomial. If a single variable is used in the polynomial the information field of the node contains two parts: one for coefficient of variable and the other for degree of variable. Let us consider an example to represent a polynomial using linked list as follows: Polynomial:      3x 3 -4x 2 +2x-9 Linked List: In the above linked list, the external pointer ‘ROOT’ point to the first node of the linked list. The first node of the linked list contains the information about the variable with the highest degree. The first node points to the next node with next lowest degree of the variable. Representation of a polynomial using the linked list is beneficial when the operations on the polynomial like addition and subtractions are performed. The resulting polynomial can also

How to use Tabs in ASP.NET CORE

I want to show Components in a tabs , so first of all create few components. In this project we have three components, First View Component  public class AllViewComponent : ViewComponent     {         private readonly UserManager<ApplicationUser> _userManager;         public AllViewComponent(UserManager<ApplicationUser> userManager)         {             _userManager = userManager;         }         public async Task<IViewComponentResult> InvokeAsync()         {             List<StudentViewModel> allUsers = new List<StudentViewModel>();             var items = await _userManager.Users.ToListAsync();             foreach (var item in items)             {                 allUsers.Add(new StudentViewModel {Id=item.Id, EnrollmentNo = item.EnrollmentNo, FatherName = item.FatherName, Name = item.Name, Age = item.Age, Birthdate = item.Birthdate, Address = item.Address, Gender = item.Gender, Email = item.Email });             }            

Memory representation of Linked List Data Structures in C Language

                                 Memory representation of Linked List              In memory the linked list is stored in scattered cells (locations).The memory for each node is allocated dynamically means as and when required. So the Linked List can increase as per the user wish and the size is not fixed, it can vary.                Suppose first node of linked list is allocated with an address 1008. Its graphical representation looks like the figure shown below:       Suppose next node is allocated at an address 506, so the list becomes,   Suppose next node is allocated with an address with an address 10,s the list become, The other way to represent the linked list is as shown below:  In the above representation the data stored in the linked list is “INDIA”, the information part of each node contains one character. The external pointer root points to first node’s address 1005. The link part of the node containing information I contains 1007, the address of